Publications

Google Scholar

2024


  • X. Zhou, X. Li, Q. Chen, G. Koolstra, G. Yang, B. Dizdar, Y. Huang, C. S. Wang, X. Han, X. Zhang, D. I. Schuster and D. Jin, ” Electron charge qubit with 0.1 millisecond coherence time“, Nature Physics 20, 116 (2024); 
  • Jing Xu, Changchun Zhong, Shihao Zhuang, Chen Qian, Yu Jiang, Amin Pishehvar, Xu Han, Dafei Jin, Josep M. Jornet, Bo Zhen, Jiamian Hu, Liang Jiang, and Xufeng Zhang, “Slow-wave hybrid magnonics,” Physical Review Letters 132, 116701 (2024).
  • Manoj Settipalli, Xufeng Zhang, Sanghamitra Neogi, “Investigation of Phonon Lifetimes and Magnon-Phonon Coupling in YIG/GGG Hybrid Magnonic Systems in the Diffraction Limited Regime,” Journal of Applied Physics 135, 104401 (2024).
  • Yuzan Xiong, Jayakrishnan M. P. Nair, Andrew Christy, James F. Cahoon, Amin Pishehvar, Xufeng Zhang, Benedetta Flebus, Wei Zhang, “Magnon-Photon Coupling in an Opto-Electro-Magnonic Oscillator,” npj Spintronics 2, 9 (2024).
  • Shihao Zhuang, Xufeng Zhang, Yujie Zhu, Nian X. Sun, Chang-Beom Eom, Paul G. Evans, Jia-Mian Hu, “Design of hybrid magnon-phonon cavity for large-amplitude terahertz spin-wave excitation,” Physical Review Applied 21, 044009 (2024).

2023


  • X. Zhou, X. Li, Q. Chen, G. Koolstra, G. Yang, B. Dizdar, Y. Huang, C. S. Wang, X. Han, X. Zhang, D. I. Schuster and D. Jin, ” Electron charge qubit with 0.1 millisecond coherence time“,  arXiv: 2210.12337 (2023)
  • X. Zhang, “A review of common materials for hybrid quantum magnonics”, Materials Today Electronics 5, 100044 (2023)
  • Amitangshu Pal, Hongzhi Guo, Sijung Yang, Mustafa Alper Akkas, and Xufeng Zhang, “Taking Wireless Underground: A Comprehensive Summary”,  ACM Transactions on Sensor Networks  20, 19 (2023) 
  • J. Xu, C. Horn, Y. Jiang, X. Li, D. Rosenmann, X. Han, M. Levy, S. Guha, and X. Zhang, ” Cryogenic hybrid magnonic circuits based on spalled YIG thin films,” arXiv (arXiv:2312.10660), (2023)

2022


  • N. Zhu, X. Zhang, X. Han, C.-L. Zou, and H. Tang, “Inverse Faraday effect in an optomagnonic waveguide”, Phys. Rev. Appl. 18, 024046 (2022)
  • X. Zhou, G. Koolstra, X. Zhang, G. Yang, X. Han, B. Dizdar, X. Li, D. Ralu, W. Guo, K. W. Murch, D. I. Schuster, and D. Jin, ​Single electrons on solid neon as a solid-state qubit platform”, Nature 605, 46 (2022); arXiv: 2106.10326 (2021)
  • J. Inman, Y. Xiong, R. Bidthanapally, S. Louis, V. Tyberkevych, H. Qu, J. Sklenar, V. Novosad, Y. Li, X. Zhang, and W. Zhang, “Hybrid magnonics for short-wavelength spin waves facilitated by a magnetic heterostructure”, Phys. Rev. Appl. 17, 044034 (2022)
  • A. Chumak, P. Kabos, M. Wu, … S. P. Wolski, X. Zhang , “Roadmap on Spin-Wave Computing,” in IEEE Transactions on Magnetics, 58, 0800172 (2022); arXiv:2111.00365

2021 


  • J. Xu, F. Han, T.-T. Wang, L. R. Thoutam, S. E. Pate, M. Li, X. Zhang, Y. Wang, R. Fotovat, U. Welp, X. Zhou, W.-K. Kwok, D. Y. Chung, M. G. Kanatzidis, and Z.-L. Xiao, “Extended Kohler’s Rule of Magnetoresistance,” Phys. Rev. X 11, 041029 (2021)
  • J. Xu, C. Zhong, X. Zhou, X. Han, D. Jin, S. Gray, L. Jiang, and X. Zhang, “Coherent Pulse Echo in Hybrid Magnonics with Multimode Phonons,” Phys. Rev. Appl. 16, 024009 (2021)
  • J. Xu, C. Zhong, X. Han, D. Jin, L. Jiang, and X. Zhang, ​Coherent gate operations in hybrid magnonics”, Phys. Rev. Lett. 126, 207202 (2021).
  • D. Awschalom, C. Du, R. He, F. Heremans, A. Hoffmann, J. Hou, H. Kurebayashi, Y. Li, L. Liu, V. Novosad, J. Sklenar, S. Sullivan, D. Sun, H. Tang, V. Tiberkevich, C. Trevillian, A. Tsen, L. Weiss, W. Zhang, X. Zhang, L. Zhao, and C. Zollitsch, “Quantum engineering with hybrid magnonics systems and materials,” IEEE Transactions on Quantum Engineering 2, 1 (2021)
  • R. Kleiner, X. Zhou, E. Dorsch, X. Zhang, D. Koelle, and D. Jin, ​Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions”, Nat. Commun. 12, 6038 (2021)
  • L. Peng, W. Cho, X. Zhang, D. Talapin, and X. Ma, “Observation of biexciton emission from single semiconductor nanoplatelets,” Phys. Rev. Mater. 5, L051601 (2021)
  • Y. Xiong, Y. Li, R. Bidthanapally, J. Sklenar, M. Hammami, S. Hall, X. Zhang, P. Li, J. Pearson, T. Sebastian, G. Srinivasan, A. Hoffmann, H. Qu, V. Novosad, and W. Zhang, “Detecting Phase-Resolved Magnetization Dynamics by Magneto-Optic Effects at 1550 nm Wavelength,” IEEE Transactions on Magnetics 57, 1 (2021)
  • N. Zhu, X. Zhang, X. Han, C.L. Zou, and H. Tang, “Inverse Faraday Effect in an Optomagnonic Waveguide,” arXiv:2012.11119 (2021)

 

 

2020


  • J. Xu, C. Zhong, X. Han, D. Jin, L. Jiang, and X. Zhang, “Floquet Cavity Electromagnonics,” Phys. Rev. Lett. 125, 237201 (2020)
  • N. Zhu, X. Zhang, X. Han, C.L. Zou, C. Zhong, C.H. Wang, L. Jiang, and H. Tang, “Waveguide cavity optomagnonics for broadband multimode microwave-to-optics conversion,” Optica 7, 1291 (2020)
  • X. Zhou, X. Han, D. Koelle, R. Kleiner, X. Zhang, and D. Jin, “On-chip sensing of hotspots in superconducting terahertz emitters,” Nano Lett. 20, 4197 (2020)
  • Y. Xiong, Y. Li, M. Hammami, R. Bidthanapally, J. Sklenar, X. Zhang, H. Qu, G. Srinivasan, J. Pearson, A. Hoffmann, V. Novosad,  and W. Zhang, “Probing magnon–magnon coupling in exchange coupled Y3Fe5O12/Permalloy bilayers with magneto-optical effects,” Sci. Rep. 10, 12548 (2020)
  • M. Otten, X. Zhou, X. Zhang, and D. Jin, “Coherent Manipulation of Single Electrons with Optical Photons in Condensed Helium‐4,” Advanced Theory and Simulations 3, 2000008 (2020)
  • X. Zhang, A. Galda, X. Han, D. Jin, and V.M. Vinokur, “Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons,” Phys. Rev. Appl. 13, 044039 (2020)
  • R. Kleiner, X. Zhou, E. Dorsch, X. Zhang, D. Koelle, and D. Jin, “Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions,” arXiv:2012.01387 (2020)

 

 

2019


  • X. Zhang, K. Ding, X. Zhou, J. Xu, and D. Jin, “Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons,” Phys. Rev. Lett. 123, 237202 (2019)
  • Y. Xiong, Y. Li, M. Hammami, R. Bidthanapally, J. Sklenar, X. Zhang, H. Qu, G. Srinivasan, J. Pearson, A. Hoffmann, V. Novosad,  and W. Zhang, “Probing magnon–magnon coupling in exchange coupled Y3Fe5O12/Permalloy bilayers with magneto-optical effects,” arXiv:1912.13407 (2019)
  • X. Zhang, A. Galda, X. Han, D. Jin, and V.M. Vinokur, “Strong coupling-enabled broadband non-reciprocity,” arXiv:1910.14117 (2019)

 

Prior to 2018, selected


  • N. Zhu, H. Chang, A. Franson, T. Liu, X. Zhang, E. Johnston-Halperin, M. Wu, and H. Tang, “Patterned growth of crystalline Y3Fe5O12 nanostructures with engineered magnetic shape anisotropy,” Appl. Phys. Lett. 110, 252401 (2017)
  • X. Zhang, N. Zhu, C.L. Zou, and H. Tang, “Optomagnonic whispering gallery microresonators,” Phys. Rev. Lett. 117, 123605 (2016)
  • N. Zhu, X. Zhang, I. Froning, M. Flatté, E. Johnston-Halperin, and H. Tang, “Low loss spin wave resonances in organic-based ferrimagnet vanadium tetracyanoethylene thin films,” Appl. Phys. Lett. 109, 8 (2016)
  • X. Zhang, C.L. Zou, L. Jiang, and H. Tang, “Cavity magnomechanics,” Sci. Adv. 2, e1501286 (2016)
  • X. Zhang, C.L. Zou, L. Jiang, and H. Tang, “Superstrong coupling of thin film magnetostatic waves with microwave cavity,” J. Appl. Phys. 119, 023905 (2016)
  • X. Zhang, C.L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. Tang, “Magnon dark modes and gradient memory,” Nat. Commun. 6, 8914 (2015)
  • X. Zhang, C.L. Zou, L. Jiang, and H. Tang, “Strongly coupled magnons and cavity microwave photons,” Phys. Rev. Lett. 113, 156401 (2014)
  • X. Zhang, T. Liu, M.E. Flatté, and H. Tang, “Electric-field coupling to spin waves in a centrosymmetric ferrite,” Phys. Rev. Lett. 113, 037202 (2014)
  • X. Han, C Xiong, K.Y. Fong, X. Zhang, and H. Tang, “Triply resonant cavity electro-optomechanics at X-band,” New J. Phys. 16, 063060 (2014)
  • H. Jung, C. Xiong, K.Y. Fong, X. Zhang, and H. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810 (2013)
  • X. Sun, X. Zhang, C. Schuck, and H. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3, 1 (2013)
  • X. Sun, X. Zhang, M. Poot, C. Xiong, and H. Tang, “A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity,” Appl. Phys. Lett. 101, 221116 (2012)
  • X. Zhang, X. Sun, and H. Tang, “A 1.16-μm-radius disk cavity in a sunflower-type circular photonic crystal with ultrahigh quality factor,” Opt. Lett. 37, 3195 (2012)
  • X. Sun, X. Zhang, and H. Tang, “High-Q silicon optomechanical microdisk resonators at gigahertz frequencies,” Appl. Phys. Lett. 100, 173116 (2012)

 

Viewing Message: 1 of 1.
Warning

Currently Under Maintenance

Sites at Northeastern, which includes this website, is currently under maintenance.

During this period, all websites are in read-only mode, and site owners, administrators, editors, authors, contributors, and subscribers will be unable to log in or make edits. Visitors can still access and navigate sites as usual.

For more info, check the IT Statuspage.